Methanogens rapidly transition from methane production to iron reduction.
نویسندگان
چکیده
Methanogenesis, the microbial methane (CH4 ) production, is traditionally thought to anchor the mineralization of organic matter as the ultimate respiratory process in deep sediments, despite the presence of oxidized mineral phases, such as iron oxides. This process is carried out by archaea that have also been shown to be capable of reducing iron in high levels of electron donors such as hydrogen. The current pure culture study demonstrates that methanogenic archaea (Methanosarcina barkeri) rapidly switch from methanogenesis to iron-oxide reduction close to natural conditions, with nitrogen atmosphere, even when faced with substrate limitations. Intensive, biotic iron reduction was observed following the addition of poorly crystalline ferrihydrite and complex organic matter and was accompanied by inhibition of methane production. The reaction rate of this process was of the first order and was dependent only on the initial iron concentrations. Ferrous iron production did not accelerate significantly with the addition of 9,10-anthraquinone-2,6-disulfonate (AQDS) but increased by 11-28% with the addition of phenazine-1-carboxylate (PCA), suggesting the possible role of methanophenazines in the electron transport. The coupling between ferrous iron and methane production has important global implications. The rapid transition from methanogenesis to reduction of iron-oxides close to the natural conditions in sediments may help to explain the globally-distributed phenomena of increasing ferrous concentrations below the traditional iron reduction zone in the deep 'methanogenic' sediment horizon, with implications for metabolic networking in these subsurface ecosystems and in past geological settings.
منابع مشابه
Method for Indirect Quantification of CH4 Production via H2O Production Using Hydrogenotrophic Methanogens
Hydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. Methanogens exhibit extraordinary ecological, biochemical, and physiological characteristics and possess a huge biotechnological potential. Yet, the only possibility to assess the methane (CH4) production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH4....
متن کاملBiochar Addition Increases the Rates of Dissimilatory Iron Reduction and Methanogenesis in Ferrihydrite Enrichments
Biochar contains quinones and aromatic structures that facilitate extracellular electron transfer between microbial cells and insoluble minerals. In this study, granulated biochar (1.2-2 mm) and powdered biochar (<0.15 mm) were amended to two ferrihydrite (in situ ferrihydrite and ex situ ferrihydrite) enrichments to investigate the effect of biochar with different particle sizes on dissimilato...
متن کاملMethanogens outcompete sulphate reducing bacteria for H2 in the human colon.
Methanogens and sulphate reducing bacteria compete for H2 in the human colon, and, as a result, faeces usually contain high concentrations of just one of these two organisms. There is controversy over which of these organisms wins the competition for H2, although theoretical data suggest that sulphate reducing bacteria should predominate. To elucidate this question experiments were undertaken i...
متن کاملMethanogens, Methane and Gastrointestinal Motility
Anaerobic fermentation of the undigested polysaccharide fraction of carbohydrates produces hydrogen in the intestine which is the substrate for methane production by intestinal methanogens. Hydrogen and methane are excreted in the flatus and in breath giving the opportunity to indirectly measure their production using breath testing. Although methane is detected in 30%-50% of the healthy adult ...
متن کاملEffect of inclusion of Myristica fragrans on methane production, rumen fermentation parameters
Aim: The present study was done to evaluate the effect of Myristica fragrans fruit active compounds addition on methane production in vitro. Materials and Methods: Methanolic extract of Myristica fragrans fruit powder was prepared and checked for its inhibitory action on methane production in diet containing roughage 50 percent and concentrate 50 percent respectively. Methane production was est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Geobiology
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2016